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ABSTRACT 

Using the homotopy limit construction over a certain small category, we 
construct spaces whose mod p cohomology algebras are the rings of invariants 
of some unitary reflection groups of order divisible by p. 

1. Introduction 

The study of finite loop spaces is related to the classical problem of deciding 
what polynomial algebras over F~ can arise as cohomology rings of spaces. 
The celebrated theorem of Adams and Wilkerson (Ill) solved this problem in 
the non-modular case, i.e. when the degrees of the generators are prime to p. 
In this case, the polynomial algebra should be isomorphic, as an algebra over 
the Steenrod algebra, to the ring of invariants of the m o t  p reduction of 
some p-adic reflection group ([1], [9]). Moreover, the irreducible non- 
modular p-adic reflection groups, as well as the set of primes admisible for 
each group, are completely classified ([9]). Hence, the interest turns to the 
modular case, when p divides the degree of some of the generators of the 
polynomial algebra. 

As a first step towards the classification of modular polynomial cohomology 
algebras and their corresponding homotopy types, one would like to produce, 
in a uniform way, enough examples of spaces of this type. The list of known 
examples is quite short. First of all, we have the classifying spaces of compact 
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connected Lie groups, at appropriate primes, i.e. at primes which do divide the 
order of the Weyl group but which still produce polynomial cohomology 
algebras. The next example is Quillen's "p-adic grassmannians" ([ 18]). Out of 
these families, only two sporadic examples were known: Two spaces con- 
structed by Zabrodsky ([23]) of ranks 2 and 4, for the primes 3 and 5, 
respectively. The present work began as an attempt to obtain Zabrodsky's 
examples in a way which is simple enough to fit in a general pattern which 
could eventually be used to produce further examples. 

According to Dwyer-Miller-Wilkerson ([12], see also [2]) for odd p, a 
realizable polynomial algebra should be isomorphic to the ring of invariants 
of a reflection group in GL,(U:p) and moreover this group should lift to 
GL,(7)p). It can be also shown ([12]) that the p-adic invariants should be 
polynomial and so the lifting of G is a complex reflection group and it is a 
product of groups in the list of Shephard-Todd ([ 12]). Hence, it is natural to 
ask about the realizability of the rings of invariants of the modular groups in 
that list. 

The purpose of this paper is to describe a simple, uniform way to con- 
struct spaces whose mod p cohomology algebra is the algebra of invariants 
of any of the groups number 12 (for p = 3), 29 (for p = 5), 31 (for p = 5), 34 
(for p = 7), 36 (for p = 5 and p = 7) and 37 (for p = 7) in the list of 
Shephard-Todd ([21]). The invariants of the first group produce the co- 
homology algebra of Zabrodsky's rank two example. The invariants of group 
number 31 have the same type as the rank 4 example of Zabrodsky. The groups 
number 36 and 37 are the Weyl groups of the exceptional Lie groups E7 and 
Es, respectively. As a consequence, we will have new homotopy realizations of 
the known examples, including some exceptional Lie groups, as well as two 
more sporadic examples. However, I imagine that the methods in the paper are 
more interesting than the results themselves and I hope that this work may fit 
into a future program which handles the classification of finite torsion-free 
loop spaces. 

The main idea in this paper was introduced by Dwyer-Miller-Wilkerson 
([12]) and Jackowski-McClure ([15]) who used small diagrams of spaces to 
obtain homotopy realizations of some classifying spaces of Lie groups. I am 
indebted to J. Lannes for introducing me to these ideas and for many helpful 
discussions. In particular, the insight leading to the construction of 
Zabrodsky's rank two example is due to him and represented the starting point 
for the present work. I have benefitted from discussions with C. Broto, 
H. Glover, S. Jackowski, A. Kono, G. Mislin, L. Smith, C. Wilkerson and 
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Z. Wojtkowiak. I want to thank the l~cole Polyth6chnique and the Ohio State 
University where this work started. I acknowledge also partial support from 
the CIRIT of the Generalitat de Catalunya. Last, but not least, I express my 
gratitude to Alex Zabrodsky. I learned from him, in Ziirich in 1980, about his 
two modular loop spaces. His guidance and encouragement was essential, then 
and thereafter. 

2. Diagram categories 

In this section we recall some well known facts about homological algebra on 
a category of diagrams of vector spaces. 

Let I be a fixed small category whose objects will be denoted by 0, 1 , . . . .  
Let 8 be the category of ~:p-vector spaces, where ~:p is the field with p elements. 
Denote by ~" the functor category whose objects are functors from I to 8, i.e. 
diagrams of vector spaces and linear maps, and whose maps are the natural 
transformations. Since I is small and 8 is abelian, ~ is also an abelian 
category. Moreover, since 8 is complete and co-complete with enough in- 
jectives and projectives, ~" has also enough injective and projective objects. 
Let us recall how one constructs enough projective objects in ~ .  Let [ be 
the category I "made discrete", i.e. the subcategory of /wi th  the same objects 
but only identity maps. The inclusion functor f :  [ - , I  induces a functor 
f*  : $~" --- # where # is the functor category f rom/ to  8. Notice that an object 
in # is just a family of vector spaces indexed by I. Since 8 admits colimits, f*  
has a left adjoint f ( the  left Kan extension o f f ) . . f c an  be described on the 
objects in the following explicit way: 

If M is an object in ~ ,  we can consider K = .ff*M. Then K projects on M 
and, since 

Homa(K, L) -- II Home(M/, Li), 

we see that K is a projective object in ~ .  In a similar way, using the right 
adjoint o f f* ,  one can construct enough injective objects in ~r. Hence, the 
category ~r is suitable for doing homological algebra. In particular, we have 
functors Ext~ ( - - ,  --). 
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3. The spectral sequence of a homotopy direct limit 

Let S¢. be the category of pointed spaces (i.e. pointed simplicial sets). 
According to Bousfield-Kan ([8]), given a functor X from I to ~ . ,  we can 
associate to X a space holim X and a spectral sequence 

"(,q-'x} 

which is "closely related" to 

/1" holim X. 

Here, li__m* denote the derived functors of  the functor li__m on the category .~ 

considered in the section above. These functors can be identified with the 
functors Ext* (Fp, - - )  where Fp denotes the constant diagram 0:~ (i.e. all objects 
are F~ and all maps are the identity). 

In particular, if X is a diagram of connected pointed spaces such that the 
functors 

Ext,, (Fp, H 'X)  

vanish for i > 0, then we have an isomorphism 

/ t*(holim X) = li_m {/q'X}. 

4. Analysing a certain small category 

We are interested in a certain small category I associated to a couple (G, H) 
where G is a finite group and H is a subgroup of G. We define I as having only 
two objects 0, 1 and maps: 

Hom(0, 0) = G 

Horn(0, l) = 

Horn(l,  1 )=  {1} 

Hom(1, 0) = G/H 

with the obvious composition maps given by the product in G and the left 
action of  G on G/H. 

Let L be the functor from I to 8 given by L0 = Fp[G/H], LI = Fp with the 
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obvious homomorphisms. Here, Fp[G/H] denotes the vector space with base 
G/H. If M is any object in ~ one sees immediately that 

Horn1 (L, M) ~ Mi 

and L is a projective object. The augmentation homomorphism 

e : Fp[G/H] ---* Fp 

extends to an epimorphism 

L & Fp~0.  

Notice that if M is an object in ~ then M0 is a G-module. 
Let us denote by K the kernel of e. We have two exact sequences in ~r and 

the category of U=p [G]- modules, respectively: 

(1) 0 - ~ K ~ L  ~ Fp-~0, 

(2) O~Ko---*U[G/H] ~ L--'O. 

Since L is projective, the functor Homa, (--, M) applied to the exact sequence 
(1) gives isomorphisms 

Ext~ (F~, M) ~ Ext,,- ~(K, M), i -_ 2. 

Since K~ -- 0, it is easy to see that 

Ext~ (K, M) ~ Ext~ (Ko, Mo), j >_- 0, 

and so we can reduce the computation of some Ext functors in the category 
.~r to ordinary Ext functors in the category of G-modules. Moreover, these 
functors can be easily related to cohomology of groups in the following 
way. Let M be a G-module and let K be the kernel of the augmentation 
homomorphism e:Fp[G/H]--.Fp. We have an exact sequence of vector 
spaces 

(3) O ~ M  -~ Homa([:p[G/H], M ) ~  Horns(K, M ) ~ 0 .  

This is also an exact sequence of G- modules with the diagonal action (g~)(x) -- 
g¢(g-~x). Since G is a finite group, we have isomorphisms of G-modules 

Hom,(~:i,[G/H],M) -~ Ind~HM ~ Coind~M, 



28 J. AGUADI~ Isr. J. Math. 

~(~)  = ~ gi ~ g Z  i{#(gi), 

where gt . . . . .  gn is a set of representatives of G/H. (Notice that, by abuse of 
notation, we write M instead of Res~ M.) Moreover, one can easily check that 
the composition 

M ~ Homt(g:p[G/H], M)  & Coind~M ~ M 

is the identity isomorphism. Let us consider now the cohomology long exact 
sequence associated with the exact sequence (3): 

. . . .  Hi(G; M)  --. Hi(G, Coind~ M)--.  H~(G; Homa (K, M)) . . . .  

By Shapiro's lemma, the homomorphisms i : H - - , G ,  x :Coind~M-- -M 
induce an isomorphism 

H*(G; Coind~n M) ~ H*(H; m). 

Since 

we have 

PROPOSITION. 

H*(G; Homa (K, M)) --~ Ext$(K, M), 

There is a long exact sequence for i > 1 

• . .H ' (G;Mo)  i~ H,(H;Mo)__.Ext~I(Fo,M)_. .H,+t(G;Mo). . .  " • 

Hence, the derived functors Ext~.(Fp,--), i >-2, measure the difference 
between the cohomology of the group G and that of the subgroup H. 
Finally, we analyse the functor Ext,,. If M is an object in #" we have an 
exact sequence 

0 ~ M~ --- M~ ~ Home(K, M0) ~ Ext~ (Fo, M) ~ 0 

where MI denotes the subspace of M~ consisting of those vectors x ~MI such 
that ~,(x) = ~aj(x) for any ~ ,  ~j in Homx(1, 0). On the other side, the analysis 
above produces a long exact sequence 

0---  M ~  ~ M0 n ~ H o m ~ ( K ,  Mo)--" H'(G; Mo) ~ HI(H; Mo)... 

where M0 ~ denotes, as usual, the subspace of invariant elements. For some 
objects M, these two exact sequences may be related. For instance, let A be a 
G-module and denote by A the object in ~r given by Ao = A,  A I ~ A n with 
the obvious maps, i.e. with the action of G on A and the homomorphisms 
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A n ~ A  obtained by composing the inclusion A n c A with the action of G. In 

this particular case we have .41 = A0 ~, A 1 = Ag and so 

Ext~ (Fp, A) = Ker{H1(G; A)--: Ht(H; A)}. 

In this case, Ex0 measures also the difference between the cohomology of G 

and that of H. 

PROPOSITION. Let G be a finite group and let H be a subgroup. Assume A is 
an ~:p[ G ]-module such that the inclusion t7I c G induces H*( G ; A) ~-- H*(H; A). 

Then, i f  A denotes the diagram defined above, we have 

Ext~ (Fp, A) = O, i > O. • 

5. The group No. 12 

As an abstract group, this is the linear group GL2(F3) of  invertible 2 × 2 
matrices over the field with three elements. As a complex reflection group, it is 
one of the 8 linear liftings of the octahedral group, as a collineation group in 
(projective) dimension l ([21 ], see also [ l 0]). Shephard-Todd give the follow- 
ing generators for G: 

where e is a primitive eighth root of  unity. Notice that this representation 
is not 3-adic as given, but it is equivalent to a 3-adic representation such 
that when we reduce mod 3 we get the natural action of  GIa(F3) on P---- 
F3[tl, hl. The corresponding algebra of invariants is well known since 
Dickson (see [22]): it is a polynomial algebra over U:3 with generators in degrees 
12 and 16. 

One can embed I;3 into G by representing the transpositions (12) and (23) by 
the matrices 

(°l ;), (;-i), 
respectively, either over U:3 or ;~3. The 3-Sylow subgroup of  G is the cyclic 

group of the upper unitriangular matrices and its normalizer N in G is the 
Borel subgroup of  upper triangular matrices and has order 223. The center Z of 
G is of order 2. 
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6. The groups No. 29 and 31 

These groups are closely related to each other, the first being a subgroup of 

the second one. Let us call them G29 and G31, respectively. Shephard gave 

generating reflections rt, r2, r3, r4 and rs for G3~ such that r~, r2, 1"3, r4 generate the 

subgroup G29 ([19], [20]). These reflections, which are of order two, are given 

by the matrices 

l l _1 _l-il, I ° -i°il 1 - 1  1 1 i 0 0 
r l = 2  - 1 1 1 0 0 1 

1 1 1 0 0 0 

1 0 0 0 
1 , r4= 0 

0 0 

r3= 0 0 

0 0 

r5 = 

1 0 0 

0 1 0 

0 0 - 1  

0 0 0 

0 0 

0 1 

1 0 

0 0 

Notice that these matrices give directly 5-adic representations of  both groups. 
Except for the above information on the generating reflections, the study 

of these two groups is quite involved, due to the fact that the significant 
references are very old and, in some cases, not easily available. Hence, it 
seems worthwhile to spend some time collecting information on these groups. 

Both G29 and G31 are uniquely determined by their associated collineation 
groups f~ and f~', respectively, f~' is a collineation group of  order 11520 in 
complex projective 3-space. It is generated by homologies of period 2 and 

was discovered by Klein in 1871 ([16]). It contains 60 homologies whose 

centers form the vertices of the 15 tetrahedra of a certain projective con- 

figuration known as the Klein configuration. This group was studied 

by Bagnera ([4]), Maschke ([17]) and Blichfeldt ([7]) among others. We 

provide now a description of f~' both as an abstract group and as a colline- 

ation group. 
Let H = ( Z / 2 7 ] ) 6 > ~  5", 6 be the group of signed permutations of the set 

{ 1 . . . . .  6). Let H + be the even subgroup of H, i.e. the subgroup of elements of 
determinant + 1 in the ordinary representation of dimensiop 6 of  H. Let 
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be the quotient of H + by its center, which is of order 2. Then, as abstract 

groups, (~' --~ .~.  
If Visa  complex vector space, we can consider the homomorphism 

PGL(V) ~ PGL(A2V) 

given by ~ ~ ~ ^ ~. If dim V >  2, then ~ is a monomorphism. Assume Vhas 
dimension 4 with basis el, e2, e3, e4. Then dim A 2 V -- 6 and we can consider the 
following basis: 

021 = e l  A e2 q- e3 A e4, 

022 = i ( e  3 A e 4 - -  e l  A e2) , 

023 = e l  A e3 + e4 A e2, 

o)4 = i(e4 ^ e2 - el ^e3), 

O,)5 = el  A e4 --[- e2 A e3, 

096 = i(e2 ^ e3 - el A e4). 

Let us represent ~ in PGL(A2V) as signed permutations of the basis {co,}. 
Then the image of Jff is contained in ¢I~PGL(V)) and we have ~ '  -- ~ - ~ ( ~ ) .  

is a subgroup of index 6 in ~ '  and is obtained by considering, instead of all 
permutations of {02i}, the subgroup of order 120 generated by (23456) and 
(12)(34)(56). 

We will find an embedding of E5 in G29 such that the restriction of the 
representation to ~5 is equivalent, over the field Fs, to the canonical re- 
presentation. By the canonical representation of E, we mean the 
( n -  1)-dimensional representation obtained by taking the quotient of 
the permutation representation in dimension n by the invariant line generated 
by (1 . . . . .  1). To find this embedding, a computer may be useful. Although 
the group we are dealing with is quite big, we are only concerned with its 
40 reflections, which can be obtained by computing all conjugates of any of 

the generating reflections ri. Once we have the matrices of the 40 reflec- 
tions, we can program a computer to look for a set of  four reflections which 
satisfy the relations of the generating reflections of Es. Once one such set is 
found, we look for a coordinate system with respect to which the four 

reflections look like the canonical representation of~gs. Notice that it is enough 
to work mod 5. 
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Consider the reflections rl, r2, r 3 and r4, where r is the conjugate of r2 by 
r2r3r4r,. Consider also the change of basis given by 

°°l t 
3 3 4  
4 0 1 " 
0 4 1  

Then, in this new basis, the reflections r~, r2, r3 and r4 are given by 

F I °1° t 1 0 0 
0 0 1 ' 
0 0 0 

r3= 1°° 1 0 1 0 
0 0 0 ' 

0 0 1  

r 2 - -  l°° t 
0 0 1  
0 1 0 ' 

0 0 0 E °°  
0 1 0 

r4= 0 0 1 

0 0 0 

The center of both G29 and G3~ is cyclic of order 4. The 5-Sylow subgroup of 
these groups is cyclic of order 5. Using the tables of Benard ([5]) we know that 
G29 has 384 elements of order 5 and G3~ has 2304 elements of order 5. This 
allows us to compute the order of the normalizer N of the Sylow subgroup 
which in both cases is equal to 80. 

7 .  T h e  g r o u p  N o .  34 

This group is a bit more accessible than the two groups in the section 
above, due to several facts. First of all, C. M. Hamill ([13]) published in 1951 
an exhaustive study of the configuration formed by the 126 centers of 
homology of the corresponding collineation group (~. Moreover, the group 
is interesting by itself, having a subgroup of index two which is isomorphic to 
the simple group PSU4(F3) (see the corresponding entry in the atlas of finite 

groups [I I]). 
Shcphard ([ 19]) introduced G as the symmetry group of a complex polytope 

in dimension 6 called (~ ?~) + ~. G is generated by 6 unitary reflections of period 
two with respect to the hyperplanes ([ 19]) 
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x / - x i _ l = 0 ,  i - - 2 , 3 , 4 , 5 ;  

X 1 -- COX 2 = O, 

Xl -~- X2 - ~ . . .  -l-X6 = O, 

where co is a primitive cubic root of  unity. (See [ 19] for the definition of  the 

unitary reflection with respect to an hyperplane.) Notice that, since to E 377, this 

is a 7-adic representation. 
The center of  G is of  order 6 and G is the only linear reflection group 

which projects onto (~. The group (~ is extensively studied by Hamill in 

[13]. We can find an embedding of the symmetric group E 7 into G in the 

following way. Let ri, i = l . . . . .  6 be the generating reflections as defined 

above. Hamill determines the set of  126 reflections of  G and we see that the 

reflection r corresponding to the hyperplane x6 - cox5 belongs to G. Then it is 

easy to check that the reflections r~, i # 5 and r generate a subgroup of  G 

isomorphic to Z7. Moreover, the change of basis given by the matrix 

- - 4 - t o  1 1 1 1 1 

1 - 4 - c o  1 1 1 1 

1 1 - - 4 - - c o  1 1 1 

1 1 1 - - 4 - c o  1 1 

1 1 1 1 - - 4 - - c o  1 
co co co co co to( - 4 - co) 

tranforms the above reflections into the canonical representation of  ZT. Notice 
also that, by choosing to ~-- 4(7), this change of basis is 7-adic. 

All elements of  order 7 in G are conjugate and Benard ([6]) finds that the size 
of  this conjugacy class is 933120. Then the order of the normalizer N of the 7- 
Sylow subgroup is 22327. 

8. The Weyl groups of Ei 

Let Gi, i = 6, 7, 8 denote the Weyl group of the exceptional Lie group 
Ei. There is a complete geometrical study of the configurations associated 

with these groups, done by Hamill in [ 14]. We see that it is possible to choose 

a basis { y~} in dimension 9 such that the roots of  Gs lie in the hyperplane 

Zy~ = 0 and they include the roots of  the symmetric group Zg. The roots of  G7 

are obtained by restricting to the hyperplane in Zy~ = 0 orthogonal to a root. 

By choosing appropriate coordinates x~, i = l . . . . .  8, we obtain a represen- 

tation of G7 in Zxi = 0 whose roots contain the roots of  Zs. We can proceed 
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further to G6, but in this case we do not find a symmetric group E7 inside the 
root system of G6. 

Letp be the (n - 1)- dimensional representation of En obtained by restricting 
the permutation representation/) of En in dimension n to the hyperplane 
Ex~ = 0. Let p* be the (n - 1)-dimensional representation of E~ obtained by 
taking the quotient of/) by the invariant line generated by ( 1 . . . .  ,1) (which we 
call the canonical representation). It is easy to see that p and p* are equivalent 
over 7]~p~ if and only if n~O(p) .  Since this condition is satisfied by G7 for 
p = 5, 7 and G8 for p = 7, we obtain that in both cases G~ contains Y.~ + ~ with the 
canonical representation. 

According to Hamill ([14]), G8 has 2123~52 elements of order 7. Hence, 
the order of the normalizer of the 7-Sylow subgroup is 2337. The center of G8 
is cyclic of order two. G7 has 29345 elements of order 7 and 28337 elements 
of order 5. The order of the normalizers of the Sylow subgroups for p = 5 
and p = 7 is 243 5 and 223 7, respectively. The center of G8 is cyclic of 

order two. 

9. Lifting a mod p action to the p-adics 

Even if we are only interested in the mod p cohomology algebra, we need, in 
order to perform the construction of the next section, to lift the mod p 
representation of G to a p-adic representation. Though, in the applications we 
have in mind, the group G comes with a well-studied p-adic representation, the 
following lemma, which is a slight generalisation of the Schur-Zassenhaus 
lemma, will provide us with a lifting of  the mod p representation of G to the 
ring of p-adic integers which will be all right for our purposes. 

LEMMA. Let H C G be groups such that 

H~(G;A) ~, H~(H;A) 

for all i > 0 and all G-modules A whose underlying abelian group is a -finite 

p-group. Let Q = E/P  where P is normal in E and is a finite p-group. Given a 

commutative diagram 

H , E 

G , Q  
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there is a homomorphism f :  G --" E which makes the diagram commutative. 

PROOF. Let us assume P = A is abelian. The extension A <~ E --  Q deter- 
mines an element aEH2(Q;A) which maps to zero in H2(H;A). Hence, 

f*(a)  ffi 0 and the induced extension A <1 E ' - *  G splits. Then, a section G - -  E '  

is given by a derivation d:  G ---A. We already have a derivation d:  H ~ A 

given by a section s: H ~ E'.  Since HI(G; A) ~ Hi(H; A), d can be extended to 

G and s can be extended to G. This proves the lemma in the abelian case. 

The general case is proved by induction on the order of  P. Assume P is not 

abelian and let C c P, C ÷ 1 be the center of  P. Consider the extension 

P/C.~ E /C  ~ Q. Since I P /C I < I P I, the induction hypothesis provides an 

homomorphismf :  G ~ E/C.  By applying the lemma in the abelian case to the 

extension C<~ E ~ E/C,  we obtain f :  G --* E with the desired property. • 

In our case, we will have a commutative diagram 

u , GL.(*,) 

G , GL.0:,) 

where H is a subgroup of G. Then, we can extend the rood p representation of 
G inductively to GL~(Z/fZ) and to GL~(:$p). 

10. Realizing rings of invariants 

In the preceding sections we have considered some groups G in the list of  
Shephard-Todd and we have proved that they have some interesting features. 

In each case, G has a complex representation as a reflection group in dimension 

n and, moreover, there is a prime p dividing the order of  G such that the 
complex representation of G can be realized over the p-adic integers. G 
contains a subgroup isomorphic to Zn ÷ l in such a way that when we restrict the 
p- adic representation of  G to En + l we get the canonical representation on En ÷ i 

in dimension n, i.e. the quotient of  the permutation representation ofEn ÷l by 

its unique eigenvector. The p-Sylow subgroup of  G is cyclic of  order p and we 

have computed the order of  its normalizer N in  G. We can sumarize the results 

in Table 1. 

Denote by P the polynomial algebra ~:p [h, • • •, t~]. We consider P as a graded 

algebra with an unstable action of  the mod p Steenrod algebra through the 

isomorphism 
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TABLE 1 

Number Order Type p n X I Z I I N i 

12 24.3 {12, 16} 3 2 5"3 2 22.3 
29 29.3.5 {8, 16,24,40} 5 4 Y s 4 24.5 
31 21°.32.5 {16,24,40,48} 5 4 5"5 4 24.5 
34 29.37.5.7 {12, 24, 36, 48, 60, 84} 7 6 Z7 6 22.32.7 
36 2t°.34.5.7 {4, 12, 16,20,24,28,36} 5 7 Zs 2 24.3.5 
36 21°.34.5.7 {4, 12, 16,20,24,28,36} 7 7 Y s 2 22.3.7 
37 2t4.3s.52.7 {4, 16, 24, 28, 36, 40, 48, 60} 7 8 Y-.9 2 23.3.7 

P -~H*(BT'; Fp), 

where T" is an n-dimensional torus. 

Let G be any of the groups above. Let H be  the subgroup of G generated by Z 
and Z, where Z denotes the center of G and Z is the symmetric group contained 
in G as described in the preceding sections. Since Y  ̀has no center, we have 
H = Z X Y .̀ I fS  denotes a p-Sylow subgroup of Y,, we have S C Y  ̀c G and S is 
also a p- Sylow subgroup of  G because I G/Y, I ~/~0(p). Let N' be the normalizer 
of  S in Y  ̀and let H '  -- Z X N' c G. By checking the table above we see that 
IN I = I H'I .  This shows that Ncoincides with the normalizer Nn of Sin  H. Let 

A be any 0=~ G- module. Since S has order p, the cohomology of G is related to 
the cohomology of  S by 

Since N = Nn, we deduce 

(,) 

/-7*(G; A) = D*(S; a)".  

B*(G; a) = g*(H; A). 

Let us take any representation G ~ GLn 0=p which restricts to the canonical 
representation of  H. In the preceding sections we have seen that such a 
representation always exists. In this section we will construct, for any of the 
groups above, a space Z such that 

H*(Z; 

as unstable algebras over the Steenrod algebra. The starting point will be a 
realization of the ring of invariants pu.  

Let P denote the diagram associated with the G-module P and the subgroup 
H of G as in Section 4. Assume that we are able to realize topologically the 
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diagram P. This means that we can find a diagram of spaces X such that 

H*(X) --- P. In other words, we need: 
(1) A space X0 with an action of G such that H*(X0; Fp) = P with the given 

action of G on P. 
(2) A space X I such that H*(XI ;  [Fp) = pn. 

(3) An H-equivariant map f :  X0--" XI which induces the inclusion pn C P 

in mod p cohomology. 
Let Z be the homotopy direct limit of X. The Bousfield-Kan spectral 

sequence of Section 3 relates H*(Z; Fp) to the functors 

Ext*(Fp, H*(X)). 

The analysis in Section 4 and the main property (.) prove that this spectral 
sequence collapses to an isomorphism 

H*(Z; Fp) ~ nom(Fp, H*(X)) ~ P~. 

Hence, we are reduced to construct a map f :  X0--" XI with the properties (1), 
(2), and (3) above. Roughly speaking, this will be done by taking X0 -- BT ~ and 
X~ equal to the quotient of BSU(n + 1) by a suitable Adams map, both 
completed at p. Since H is the product of a cyclic central group and a 
symmetric group, this looks all right from a cohomological point of view but it 
is not accurate enough for our purposes. Notice that we need true actions and 
true equivariant maps and not just diagrams which commute up to homotopy. 
In particular, we need to choose an Adams map which produces an action ofF* 

on BSU(n + 1) or some equivalent space. 
Let q be a prime number different from p and let k be the field obtained by 

adjoining to Fq all pr_ th roots of unity, for all r. Let k~ c k be the smallest field 
containing the p-th roots of unity. By choosing the prime q conveniently, we 
can suppose that kt is an extension of U:q of degree p - 1. If we denote by p f  
and #p the groups of f - t h  roots of unity and p-th roots of unity, respectively, 
we have a commutative diagram 

Gal(k, Fq) , Aut(pp~) m ;~* 

1 1 
Gal(kt, Fq) , Aut(/tp) --~ (Z/pZ)* 

where the horizontal arrows are monomorphisms and the vertical ones are 
epimorphisms. The image of Gal(k, Fq) in ~* is a compact subgroup which 
projects onto (Z/pZ)*. Then, a straightforward argument shows that this 
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image should contain a ( p - 1) root of  unity and so there is an automorphism 

a of k such that a p- ~ = 1. 

The mod p cohomology of the general linear group on a subfield K of Eq was 
computed by Quillen ([ 18]). It only depends on the image of 

Gal(Eq, K) -~ Aut(#:) .  

For the field k this image is trivial and we obtain H*(BGL,+~k; g:p)~ 
H*(BU(n + 1);0:p). This can be extended to BSL,+Ik .  More precisely, 

n we have that the diagonal inclusion / t :  c ( k * ) ' C  SL,+ tk  induces an 

isomorphism 

H*(BSL,+~ k; Ep) -X H*(BI~: ; Ep) z.+,. 

We can now define the map f :  Xo~Xt satisfying the requirements (1), (2) 
and (3). Recall that we start with a representation of G over D:p which res- 

tricts to the canonical representation of H = Z × Z. The lifting theorem 

of Section 9 allows us to lift this mod p representation to a representation p 

defined over the p-adic integers. We take X0 = B/t~% × EG, with G acting on 

B/1~% through the dual of  p (we do that in order to get the right action on 

cohomology). Let Xt = BSL, + 1 k ×z  EZ where Z is the center of  G acting on k 

through an appropriate power of the automorphism a defined above. Finally, 

the map f is constructed in the following way. Let us denote by SL,+1 k 
the subgroup of GL, + ~ k formed by the matrices with determinant + 1. It is 
the kernel of the composition of the determinant homomorphism and the 

quotient homomorphism k*-,k*/{ + 1}. Since this homomorphism is a 

mod p cohomology isomorphism, for p odd, we see that H*(SL,+~ k; ~:p)~ 
- -  n 

H*(SL, +1 k; Ep). Then, SL, +1 k contains the group p :  :~ Z, + 1 as the subgroup 

of  the linear transformations xi ~ 2ix~t,), 2, ~pp~, a ~X,  + t, I-I2i = 1. T h e n f  is 
the following composition: 

n ~ n ?1 B/~;~ X EG B/I,® ×.EG ~B#;~ ×nEH---*(BU~ ×~ET.)×zEZ 

n 

O(,up® ~ ~,) X z  E Z  ~ B SLn+ I k Xz EZ. 

Finally, we take the p- completion of  X0 and X~ in the sense of  Bousfield-Kan. 

Then conditions (1), (2) and (3) are satisfied and the cohomology of the 
homotopy limit of  the diagram formed by X0 and X~ with the action of  G on X0 
and the trivial action of H on Xi is isomorphic to the ring of invariants of  G, as 

desired. We have proved 
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THEORI~M. (1) For any group G and prime p in Table 1, there is at least one 
rood p representation of  G which restricts to the canonical representation of the 
subgroup H. 

(2) For any such representation, there is a space Z such that H*(Z; Fp) ~ Po 
as algebras over the Steenrod algebra. • 

11. Final remark 

In this paper we have constructed several spaces whose mod p cohomology 
algebras are isomorphic, as algebras over the Steenrod algebra, to algebras of  
invariants of some very particular groups. These groups have been chosen 
because it seems possible that they play a significant role in an eventual future 
classification theorem. 

There are two points in which the present work is incomplete: First, there is 
still an infinite family of modular  reflection groups with polynomial rings of 
invariants whose realizability is undecided. It consists of  the groups 
G(m, n, r), r > 1 dividing m, m dividing p - 1, p _-< n which appear in 
number  2 of the list of  Shephard-Todd ([21 ]). On the other hand, as the title of  
the paper suggests, one would like to construct classifying spaces of  new (or 

old) finite loop spaces. To achieve this goal, the cohomology algebras that we 
realize should be polynomial algebras. There are three cases (corresponding to 
groups No. 29, 31 and 34) in which I have not provided a proof  that the mod  p 
ring of invariants is polynomial. I plan to consider these problems in a 
forthcoming paper ([3]). 
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